Simetri Yasaları
 

(x,y,z) uzayındaki konum vektörü r'nin, sağ veya sol el kuralı tercihinden bağımsız olarak bir yönü vardır. Dolayısıyla r, yönlü veya kutuplu, yani kutupsal bir vektördür. Konumun türevi olan hız (v) ve hızla kütlenin çarpımı olan momentum (p), keza yönlü veya kutuplu, yani kutupsal vektörlerdir. Hızın türevi olan ivme (a) ve ivmeyle kütlenin çarpımı olan kuvvet (F) de öyle... Halbuki açısal momentum L; konum r ile, momentum p'nin bileşenleri arasındaki bir ilişkiden kaynaklanır ve aslında düzlemsel olan bir niteliğin ölçüsüdür. Bu aşamada vektör olup olmadığı dahi belli değildir. Ancak hem r, hem de p'ye dik olduğu için, r ile p'nin tanımladığı düzleme dik bir doğrultuya sahiptir. Doğrultusu olduğu için, biz L'yi bir vektörle ilişkilendirmek ister ve L=rxp ifadesiyle tanımlarız. Bu ifade bize L'nin yattığı doğrultuyu, yani ekseni verir; fakat yönü hakkında bir şey söylemez, yön veremez. Çünkü L'nin doğrultusu vardır, ama aslında yönü yoktur. Bu yüzden sahte ve 'eksenel' bir vektördür zaten, 'yönlü' veya 'kutuplu' bir gerçek vektör değildir. Ancak biz L'ye bir de yön vermek isteriz ve vektör çarpımını alırken, örneğin sağ el kuralını benimseyerek, olası iki yönden birini, sadece isteğe bağlı olarak seçeriz. L ancak bundan sonradır ki, vektör L olur. Halbuki sol el kuralını da tercih edebilir ve L'ye tam tersi bir yön de verebilirdik: Vektör çarpımıyla karşılaştığımız her bağlamda aynı el kuralını kullanmak kaydıyla!