

Vishay Semiconductors

Reflective Optical Sensor with Transistor Output

e4

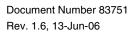
Description

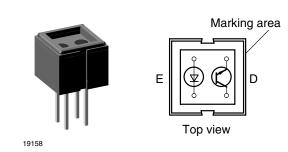
The CNY70 is a reflective sensor that includes an infrared emitter and phototransistor in a leaded package which blocks visible light.

Features

- Package type: Leaded
- Detector type: Phototransistor
- Dimensions: L 7 mm x W 7 mm x H 6 mm
- Peak operating distance: < 0.5 mm
- Operating range: 0 mm to 4.5 mm
- Typical output current under test: $I_C = 1 \text{ mA}$
- Daylight blocking filter
- Emitter wavelength 950 nm
- Lead (Pb)-free soldering released
- Lead (Pb)-free component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC
- Minimum order quantity 4000 pcs in tubes, 80 pcs/tube

Absolute Maximum Ratings


 $T_{amb} = 25$ °C, unless otherwise specified


Coupler

Parameter	Test condition	Symbol	Value	Unit
Total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	P _{tot}	200	mW
Ambient temperature range		T _{amb}	- 40 to + 85	۵°
Storage temperature range		T _{stg}	- 40 to + 100	۵°
Soldering temperature	Distance to case 2 mm, t \leq 5 s	T _{sd}	260	۵°

Input (Emitter)

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage		V _R	5	V
Forward current		١ _F	50	mA
Forward surge current	t _p ≤ 10 μs	I _{FSM}	3	A
Power dissipation	$T_{amb} \le 25^{\circ}C$	P _V	100	mW
Junction temperature		Tj	100	°C

Applications

Optoelectronic scanning and switching devices i.e., index sensing, coded disk scanning etc. (optoelectronic encoder assemblies).

CNY70

Vishay Semiconductors

Output (Detector)

Parameter	Test condition	Symbol	Value	Unit
Collector emitter voltage		V _{CEO}	32	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		Ι _C	50	mA
Power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	P _V	100	mW
Junction temperature		Tj	100	°C

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

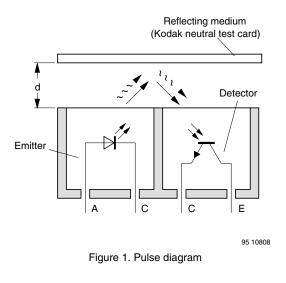
Coupler

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector current	V _{CE} = 5 V, I _F = 20 mA, d = 0.3 mm (figure 1)	Ι _C ¹⁾	0.3	1.0		mA
Cross talk current	$V_{CE} = 5$ V, $I_F = 20$ mA (figure 1)	I _{CX} ²⁾			600	nA
Collector emitter saturation voltage	I _F = 20 mA, I _C = 0.1 mA, d = 0.3 mm (figure 1)	V _{CEsat} ¹⁾			0.3	V

 $^{1)}$ Measured with the 'Kodak neutral test card", white side with 90 % diffuse reflectance

²⁾ Measured without reflecting medium

Input (Emitter)


Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 50 mA	V _F		1.25	1.6	V

Output (Detector)

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Collector emitter voltage	I _C = 1 mA	V _{CEO}	32			V
Emitter collector voltage	I _E = 100 μA	V _{ECO}	5			V
Collector dark current	$V_{CE} = 20 \text{ V}, \text{ I}_{f} = 0, \text{ E} = 0$	I _{CEO}			200	nA

CNY70 Vishay Semiconductors

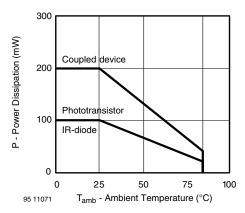
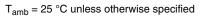



Figure 2. Power Dissipation Limit vs. Ambient Temperature

Typical Characteristics

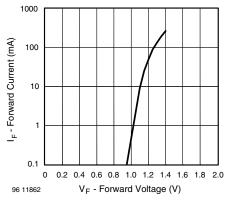


Figure 3. Forward Current vs. Forward Voltage

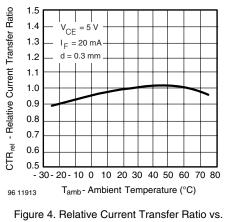


Figure 4. Relative Current Transfer Ratio vs. Ambient Temperature

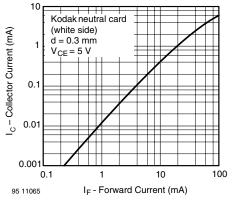


Figure 5. Collector Current vs. Forward Current

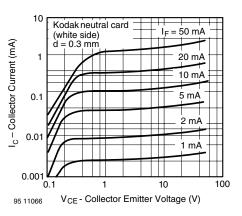


Figure 6. Collector Current vs. Collector Emitter Voltage

Document Number 83751 Rev. 1.6, 13-Jun-06 Vishay Semiconductors

CNY70

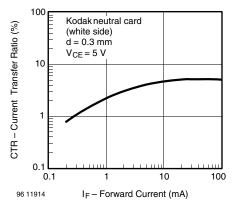


Figure 7. Current Transfer Ratio vs. Forward Current

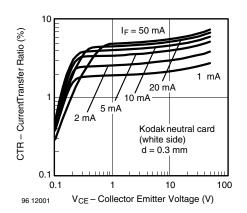


Figure 8. Current Transfer Ratio vs. Collector Emitter Voltage

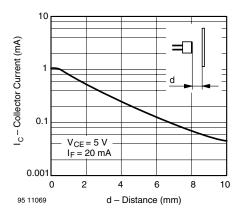
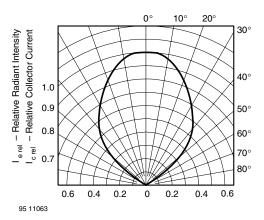



Figure 9. Collector Current vs. Distance

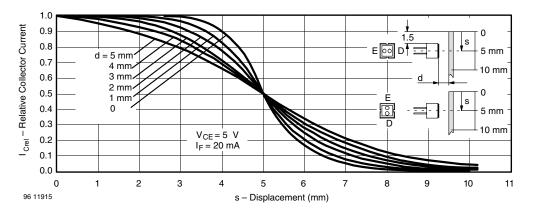
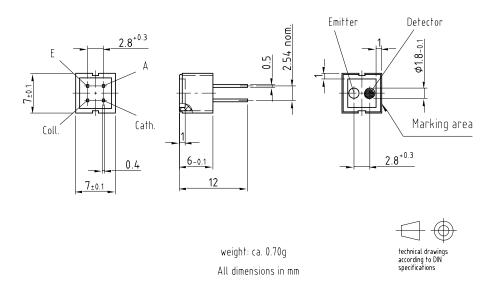



Figure 11. Relative Collector Current vs. Displacement

Package Dimensions

Drawing-No.: 6.544-5062.01-4 Issue: 6; 03.05.06

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.